A Murnaghan-Nakayama rule for noncommutative Schur functions
نویسنده
چکیده
We prove a Murnaghan-Nakayama rule for noncommutative Schur functions introduced by Bessenrodt, Luoto and van Willigenburg. In other words, we give an explicit combinatorial formula for expanding the product of a noncommutative power sum symmetric function and a noncommutative Schur function in terms of noncommutative Schur functions. In direct analogy to the classical Murnaghan-Nakayama rule, the summands are computed using a noncommutative analogue of border strips, and have coefficients ±1 determined by the height of these border strips. The rule is proved by interpreting the noncommutative Pieri rules for noncommutative Schur functions in terms of box-adding operators on compositions.
منابع مشابه
The Murnaghan-Nakayama rule for k-Schur functions
We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmet...
متن کاملTwo Murnaghan-nakayama Rules in Schubert Calculus
The Murnaghan-Nakayama rule expresses the product of a Schur function with a Newton power sum in the basis of Schur functions. We establish a version of the Murnaghan-Nakayama rule for Schubert polynomials and a version for the quantum cohomology ring of the Grassmannian. These rules compute all intersections of Schubert cycles with tautological classes coming from the Chern character. Like the...
متن کاملNoncommutative schur functions and their applications
We develop a theory of Schur functions in noncommuting variables, assuming commutation relations that are satissed in many well-known associative algebras. As an application of our theory, we prove Schur-positivity and obtain generalized Littlewood-Richardson and Murnaghan-Nakayama rules for a large class of symmetric functions, including stable Schubert and Grothendieck polynomials.
متن کاملA Short Proof of a Plethystic
The purpose of this note is to give a short proof of a plethystic generalization of the Murnaghan–Nakayama rule, first stated in [1]. The key step in the proof uses a sign-reversing involution on sequences of bead moves on James’ abacus (see [3, page 78]), inspired by the arguments in [4]. The only prerequisites are the Murnaghan–Nakayama rule and basic facts about plethysms of symmetric functi...
متن کاملSkew quantum Murnaghan-Nakayama rule
In this extended abstract, we extend recent results of Assaf and McNamara, the skew Pieri rule and the skew Murnaghan-Nakayama rule, to a more general identity, which gives an elegant expansion of the product of a skew Schur function with a quantum power sum function in terms of skew Schur functions. We give two proofs, one completely bijective in the spirit of Assaf-McNamara’s original proof, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 58 شماره
صفحات -
تاریخ انتشار 2016